Login | Signup now       


 Click to see how  


Document search results: "gradient"
   Most Viewed
   Most Recent
   Most Discussed
 All Subjects
  Aeronautics and A...   
  Business and Mana...   
  Chemistry and Che...   
  Civil and Environ...   
  Cognitive Science   
  Computer Science   
  Earth and Atmosph...   
  Electrical Engine...   
  Entrepreneurship ...   
  Laboratory Equipm...   
  Languages and Lit...   
  Material Science ...   
  Mechanical Engine...   
  Media Arts   
  Medical Sciences   
  Nanoscience and N...   
  Nuclear Engineeri...   
  Oceanography and ...   
  Political Science   
  Public Health   
  Robotics and Arti...   
  Softwares and Pro...   







 The Role of Density Gradient in Liquid Rocket...  

Experimental and analytical studies were conducted to investigate key physical mechanisms responsible for flame-acoustic coupling during the onset of acoustically driven combustion instabilities in liquid rocket engines (LREs). Controlled experiments were conducted in which a turbulent hydrogen-oxygen (GH2-GO2) diffusion flame, established downstream of a two-dimensional model shear coaxial injector was acoustically forced by a compression driver unit mounted in a transverse direction and excited through a broad range of frequencies (200Hz-2000Hz) and amplitudes. Characteristic interactions between flame and acoustics visualized through OH* and CH* chemiluminescence imaging and dynamic pressure measurements obtained using high frequency dynamic pressure transducers indicated that small acoustic disturbances could be amplified by flame-acoustic coupling under certain conditions leading to substantial modulation in spatial heat release fluctuations. Density gradient between fuel and oxidizer was found to significantly affect the way acoustic waves interacted with density stratified flame fronts. The particular case of an asymmetric flame front oscillation under transverse acoustic forcing indicated that baroclinic vorticity, generat...

Go to document page
Added By - A Ghosh
Subject - Aeronautics and Astronautics
Document Type - PhD Thesis


 Adaptive Equalization Techniques using Recurs...  

In this project, we extend the use of methods of least squares to find a recursive algorithm solution of adaptive transversal filter. Given the LS solution at any time instant n-1, we find the solution at time n recursively using past solution and newly arrived data. This algorithm is known as Recursive Least Squares (RLS) algorithm. We show the convergence rate of RLS algorithm is faster than LMS algorithm by comparing the learning curves of two algorithms for specified channel response.

Go to document page
Added By - ravigarg
Subject - Electrical Engineering
Document Type - White Paper


 Laminar Separation Bubble  

This essay focuses on the phenomenon of Laminar Separation Bubble observed at Low Reynolds Numbers. The effect of this bubble on the airfoil characteristics is discussed. Airfoils used at low Reynolds numbers have to be designed taking into consideration the finite space and time occupied by the bubble. Active as well as passive mechanisms to control/delay the formation of the bubble are also mentioned.

For conventional aircraft wings, whose Reynolds number exceeds a million, the flow is typically turbulent with the boundary layer able to strengthen itself by ‘mixing’. Consequently flow doesn’t separate until high angles of attack are encountered. For lower Reynolds numbers, the flow is initially laminar and is prone to separate even under mild adverse pressure gradient. Under certain flow conditions, the separated flow reattaches and forms a Laminar Separation Bubble (Fig. 1) while transitioning from laminar to turbulent state. Laminar separation bubble could modify the effective shape of the airfoil and consequently influence the aerodynamic performance, generally in a negative manner.

The need to understand low Reynolds number (104 to 106) aerodynamics is driven by variety of applicat...

Go to document page
Added By - anandsaxena
Subject - Aeronautics and Astronautics
Document Type - White Paper


 Modeling and Simulation of Mixing Layer Flows...  

Film cooling has been selected for the thermal protection of the composite nozzle extension of the J-2X engine which is currently being developed for the second stage of NASA’s next generation launch vehicle, the Ares I rocket. However,several challenges remain in order to achieve effective film cooling of the nozzle extension and to ensure its safe operation. The extreme complexity of the flow (three-dimensionalwakes, lateral flows, vorticity, and flow separation) makes predicting film cooling performance difficult. There is also a dearth of useful supersonic film cooling data available for engineers to use in engine design and a lack of maturity of CFD tools to quantitatively match supersonic film cooling data. This dissertation advances the state of the art in film cooling by presenting semi-empirical analytical models which improve the basic physical understanding and prediction of the effects of pressure gradients, compressibility and density gradients on film cooling effectiveness. These models are shown to correlate most experimental data well and to resolve several conflicts in the open literature. The core-to-coolant stream velocity ratio, R, and the Kays acceleration parameter, KP, are identified as the critical paramete...

Go to document page
Added By - kdellimo
Subject - Aeronautics and Astronautics
Document Type - PhD Thesis


 Complex Classification Using Advanced Machine...  

In this report, we studied different complex classification models such as Gradient Descent, Multiclass Classification. We also used different Machine Learning tools such as LibSVM, MEGAm, and FastDT to design a complex classifier based on OVA and AVA approaches. We also designed 2 different Rank classifier using MEGAm library and evaluated its performance on the OHSUMED database. The binary classification accuracy (0-1) error using 20 different queries and 10 retrieved documents for each query was 33% for Ranking Classifier 1. The binary classification accuracy for Ranking Classifier 2 was 37%. However, the average ranking performance, as evaluated using DCG metric, was roughly 8% better for Ranking Classifier 2 as compared with Ranking Classifier 1. This improvement comes from the cost function used to penalize the mis-ranking.

Go to document page
Added By - ravigarg
Subject - Computer Science
Document Type - Term Paper

Page 1 of 1